MRSPTU Ph.D. Entrance Test 2020 – Question Paper

Q1.	In a skew-symmetric matrix, all the diagonal elements are					
Α	1					
В	0					
С	∞					
D	Indeterminate					
Q2.						
	The Eigen values of the matrix $A = \begin{bmatrix} -6 & 7 & -4 \\ 2 & 4 & 2 \end{bmatrix}$ are					
A	8, 7, 3					
В	15, 10, 3					
С	15, 3, 0					
D	2, 7, 2					
Q3.	A function $f(x,y)$ of two independent variables x and y is continuous at the point					
	(a,b) if $\lim_{x \to a} f(x, y) = f(a, b)$, subject to					
	$y \rightarrow b$					
A	x and y approach a and b respectively from left only					
В	x and y approach a and b respectively from right only					
C	x and y approach a and b respectively in any manner					
D	x approaches a from left only and y approaches b from right only					
Q4.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J}					
Q4.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is					
Q4. A	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$					
Q4. A B	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$					
Q4. A B C	If $\mathbf{A} = 5t^{2}\mathbf{I} + t\mathbf{J} - t^{3}\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^{2} - 1)\cos t + 11t\sin t$ $(5t^{2} - 1)\sin t - 11t\cos t$ $(5t^{2} + 1)\cos t + 11t\sin t$					
Q4. A B C D	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$					
Q4. A B C D	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$					
Q4. A B C D Q5.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients					
Q4. A B C D Q5.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is					
Q4. A B C D Q5.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear					
Q4. A B C D Q5. A B	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear Non-linear					
Q4. A B C D Q5. A B C	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I} , \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation isLinearNon-linearPartial					
Q4. A B C D Q5. A B C D	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation isLinearNon-linearPartialNone of the above					
Q4. A B C D Q5. A B C D	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation isLinearNon-linearPartialNone of the above					
Q4. A B C D Q5. A B C D O 6.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I}, \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear Non-linear Partial None of the above					
Q4. A B C D Q5. A B C D Q6.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I} , \mathbf{J} 					
Q4. A B C D Q5. A B C D Q6.	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I} , \mathbf{J} & \mathbf{K} are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear Non-linear Partial None of the above For the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$, the roots of the auxiliary equation are:					
Q4. A B C D Q5. A B C D Q6. A P	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I} , $\mathbf{J} \& \mathbf{K}$ are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear Non-linear Partial None of the above For the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$, the roots of the auxiliary equation are: -1, 2					
Q4. A B C D Q5. A B C D Q6. A B	If $\mathbf{A} = 5t^2\mathbf{I} + t\mathbf{J} - t^3\mathbf{K}$ and $\mathbf{B} = \sin t \mathbf{I} - \cos t \mathbf{J}$, where $\mathbf{A} \& \mathbf{B}$ are vectors and \mathbf{I} , $\mathbf{J} \& \mathbf{K}$ are unit vectors, then $\frac{d}{dt}(\mathbf{A}, \mathbf{B})$ is $(5t^2 - 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t - 11t\cos t$ $(5t^2 + 1)\cos t + 11t\sin t$ $(5t^2 - 1)\sin t + 11t\cos t$ In a differential equation, if the dependent variable and its differential coefficients occur only in the first degree and are not multiplied together, the differential equation is Linear Non-linear Partial None of the above For the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$, the roots of the auxiliary equation are: -1, 2 -1, -2					

D	1, 2				
Q7.	Real part of the complex number $e^{5+i\pi}$ is				
А	-1				
В	$-e^{5}$				
С	1				
D	<i>e</i> ⁵				
Q8.	In statistics, mode is a measure of				
А	Dispersion				
В	Asymmetry				
С	Probability				
D	Central tendency				
Q9.	A box contains 5 red and 10 black balls, out of which 8 balls are taken out and				
	thrown away. What is the probability that the box now contains 2 red and 6 black				
	balls?				
А	12/50				
В	50/96				
С	96/140				
D	140/429				
Q10.	Which of the following numerical methods is not used for solving linear				
	simultaneous equations?				
Α	Horner's method				
В	Gauss elimination method				
C	Gauss-Jordan method				
D	Jacobi's Iteration method				
Q11.	The maximum and minimum magnitude of resultant forces is 1000 N and 500 N at				
	point. What are the values of two forces acting on it?				
Α	500 N, 500 N				
В	450 N, 550 N				
С	300 N, 700 N				
D	300 N, 700 N				
Q12.	Which method is used to determine centroid of a composite figure?				
А	Analytical method				
В	Graphical method				
С	Both A and B				
D	None of the above				
Q13.	The Young's modulus of a perfectly rigid body is				
А	Zero				
В	One				

С	Between zero and one					
D	Infinite					
014.	The actual breaking stress in stress-strain diagram is the ratio of					
A	load at breaking point and reduced cross-sectional area					
В	load at breaking point and original cross-sectional area					
С	maximum load and original cross-sectional area					
D	vield load and original cross-sectional area					
015	In which of the following is Coriolis component encountered?					
Δ	Slider crank mechanism					
R	Double slider chain mechanism					
D C	Quick raturn machanism					
	Poth (A) and (C)					
D	Both (A) and (C)					
016						
Q16.	The module of a spur gear is given by					
Α	Ratio of pitch circle diameter to number of teeth					
В	Product of pitch circle diameter and number of teeth					
С	Ratio of number of teeth to pitch circle diameter					
D	Product of pitch circle diameter and pressure angle					
Q17.	A vibrating machine of 100 kg is mounted on a rubber pad which has stiffness of 500 N/m. Determine force transmitted to the foundation if the unbalanced force 500 N acts on it. The frequency ratio (α/α) is 1.5 and $\xi = 0.5$					
Δ	$\frac{500 \text{ N}}{462 \text{ N}}$ kets on it. The frequency ratio (ω/ω_n) is 1.5 and $\zeta = 0.5$					
R R	402 N					
D C	400 N 262 N					
	S02 N					
D						
010						
Q18.	Critical damping depends upon					
A						
B	Stiffness and viscosity of medium					
C	Stiffness and amplitude					
D	Mass and frequency of system					
010						
Q19.	A key connecting a flange coupling to a snart is likely to fail in					
A D	Tancian					
D C	Tension					
	Dending					
020	In the Lewis equation, the working stress depends upon					
Δ	Material of the tooth and pitch line velocity					
R	Pitch line velocity and load conditions					
	Load conditions and material of the tooth					
	Pitch line velocity. Load conditions and material of the tooth					

Q21.	What is the effect of free stream velocity on thickness of boundary layer?				
А	Increase in free stream velocity increases the boundary layer thickness				
В	Increase in free stream velocity decreases the boundary layer thickness				
С	Decrease in free stream velocity decreases the boundary layer thickness				
D	Free stream velocity does not affect the boundary layer thickness				
Q22.	The graph of change in shear stress with				
	respect to velocity gradient, shown here,				
	represents which type of the fluid?				
A	Ideal fluid T				
B	Dilatent fluid				
C	Newtonian fluid				
D	Non-Newtonian fluid				
	0 du/dy				
023	Which of the following is the correct formula for Euler's equation of motion?				
2-01	Where, ρ = density of the fluid, P = pressure force, g = acceleration due to gravity,				
	v = velocity of the fluid				
А	$(\partial \mathbf{P}/\rho) + (\partial \mathbf{g}/\rho) + (\partial \mathbf{v}/\rho) = 0$				
В	$(\partial \rho/P) + (\partial g/\rho) + (vdv) = 0$				
С	$(\partial P/\rho) + (gdz) + (vdv) = 0$				
D	$\left(\left(\partial \rho/P\right) + \left(gdz\right) + \left(vdv\right) = 0$				
Q24.	Which of the following is measured by a rotameter?				
А	Velocity of fluids				
В	Discharge of fluids				
С	Viscosity of fluids				
D	Density of fluids				
Q25.	The total inclination angle of short converging conical tube in venturimeter is				
Α	$11 \pm 1^{\circ}$				
В	$21 \pm 1^{\circ}$				
С	$30 \pm 1^{\circ}$				
D	$60 \pm 1^{\circ}$				
Q26.	Which among the following statement is incorrect?				
A	Energy is an extensive property				
В	Specific energy is an extensive property				
C	Energy is a point function				
D	Heat capacity is an extensive property				
Q27.	A quasi-static process is				
A	a stationary process				
В	an infinitely slow process				
С	a random process				
D	a spontaneous process				

Q28.	A cyclic heat engine operates between a source temperature of 927°C and a sink				
	temperature of 27°C. The maximum efficiency of the heat engine is				
A	100%				
В	80%				
C	75%				
D	70%				
Q29.	The dryness (x) fraction of superheated steam is taken as				
A	0				
B	0.1				
C	0.9				
D	1.0				
Q30.	What is the perfect condition for dehumidification of air?				
A	Air is heated above its dew point temperature				
В	Air is cooled up to its dew point temperature				
C	Air is heated below its dew point temperature				
D	Air is cooled below its dew point temperature				
Q31.	In Iron-Carbon equilibrium diagram, cementite changes from ferromagnetic to				
	paramagnetic in character at a temperature of approximately				
Α	190°C				
В	207°C				
С	247°C				
D	723°C				
Q32.	Which of the following alloy is used for manufacturing food-processing				
	machinery?				
A	Inconel				
B	Monel metal				
C	Alnico				
D	Pewter				
Q33.	Cores are normally employed in castings to				
Α	Make molten metal rise in riser				
В	Reduce the solidifying rate				
C	Make cavities in casting				
D	Supplement gating system				
Q34.	Which of the following processes is most commonly used for forging of bolt heads				
	of hexagonal shape?				
A	Closed die drop forging				
B	Open die upset forging				
C	Closed die press forging				
D	Open die progressive forging				
	open die progressive forging				

Q35.	The presence of residual flux after the welding operation leads to				
A	Porosity				
В	Corrosion				
С	Crack formation				
D	Embrittlement				
Q36.	The design of cutting tools is based on				
Α	Tensile strength				
В	Rigidity				
С	Compactness				
D	Bending stress				
Q37.	The cutting speed in turning operation would be least in case of				
Α	Aluminium				
В	Mild steel				
С	Stainless steel				
D	Medium carbon steel				
Q38.	Which of the following has highest accuracy?				
Α	External micrometer				
В	Vernier height gauge				
C	Internal micrometer				
D	Dial indicator				
Q39.	In CAD, solid models are constructed using basic 3-D shapes called				
Α	Basic Solids				
В	3-D Solids				
С	Primitives				
D	Parallelepipeds				
Q40.	In ABC analysis, the items which require maximum control are represented by				
A	A+B+C				
В	B + C				
С	A+C				
D	Α				

Q. No.	A. Key	Q. No.	A. Key
1	В	21	В
2	С	22	D
3	С	23	С
4	А	24	В
5	А	25	В
6	С	26	В
7	В	27	В
8	D	28	С
9	D	29	D
10	А	30	D
11	D	31	В
12	С	32	A
13	D	33	С
14	А	34	С
15	С	35	В
16	А	36	В
17	А	37	С
18	A	38	D
19	A	39	С
20	D	40	D

MRSPTU Ph.D. Entrance Test 2020 – Answer Key